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ABSTRACT 

We describe a class of approximation procedures which is 

applicable to a variety of lattice theories including lattice gauge theories. 

The approach is non-perturbative in the temperature or its inverse. The 

low order approximants are expected to be most reliable at low 

temperatures. As examples we approximate the free energy of the 

classical x - y model and Abelian gauge fields on a lattice in two ways, 

one of which gives us monotonously converging bounds on the free energy. 

s Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

In this paper we will describe a new method for calculating 

thermodynamic averages in lattice systems. Our approach is non-perturbative 

in the temperature or coupling constant or their inverse, and should be 

applicable to a variety of lattice theories describable by an explicit 

Hamiltonian, including many latticized Lagrangian field theories. The 

method is based on parameterizing the constraints which naturally appear 

in the partition function in such a way that the theory can be calculated 

while approximately incorporating these constraints. 

Roughly speaking, the theory is computed as a power series in 

some quantity (say h ) which characterizes an approximate parameterization 

of the constraints, and then extrapolation methods (e. g. , Pad& approximants) 

are used to evaluate the calculated expressions at the value of ), at which 

the parameterization becomes equal to the original constraint. Since a 

constraint may have several possible parameterizations, the method is 

quite flexible, and one has the freedom to choose the most convenient 

representation for the particular problem at hand. This point will be 

discussed further in the next section. In addition, one has the freedom 

to choose an appropriate extrapolation technique. Two such procedures 

will be discussed here: one based on Padk approximants (section III), 

and a more powerful one based on generalized Pad; approximants 

(section IV). 
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To illustrate our methods we will concern ourselves primarily 

with two related theories: the classical x - y model and its locally gauge 

invariant cousin, the lattice gauge theory with U(1) symmetry. 
1 

The 

naive continuum limit of this latter theory describes (free) photons, and 

so the theory will be called quantum photodynamics (Q. Ph. D. ). In 

particular, we shall limit ourselves to calculations of the free energy 

for these theories. These calculations illustrate well the general methods, 

and in addition, some rigorous theorems for these quantities can be proved 

which place the version of our approximation scheme described in section 

IV on firm mathematical ground. Specifically, we are able to establish 

for at least some theories, a monotonously converging sequence of upper 

bounds to the magnitude of the free energy. It seems to us likely that 

similar bounds can be established for other quantities of interest, but 

this has not yet been done. 

The paper is organized as follows: In section II we first describe the 

theories with which we shall deal. We then discuss the kinds of parameterizatio 

which will be useful for our calculations, and outline the general approach. 

We also argue that the low order approximations should be most 

accurate at low temperatures, an assertion which is supported by 

calculations performed on soluble models in sections III and IV. 

In section III we present the simplest version of our method which 

consists of straightforward Pad& approximants to the free energy in the 

constraint parameter, A. We compute low order approximants for the 



FERMILAB-Pub-76/78-THY 

x - y model and Q.Ph. D. for a range of temperatures and lattice 

dimensions and present the results. Although this version of the method 

sometimes gives good approximations to the free energy (notably at low 

temperatures 1, we have not yet been able to prove convergence of the 

approximants. In this section also, a diagrammatic technique for calculating 

the power series in A for the free energy is described. The algorithm is 

similar to the linked cluster expansion of statistical mechanics and simplifies 

the calculations of this and the next section. 

In section IV another, more sophisticated version of our approach 

based on generalized Pade/ approximants (GPA) is discussed. This 

method consists of using GPAls to approximate the free energy for finite 

systems, and then, using a procedure due to Bessis, Moussa, and 

Villani, 2 extrapolating to the thermodynamic limit. In certain cases 

(that is, with certain boundary conditions) one can prove that the 

approximants so derived form a sequence of monotonously converging 

bounds to the free energy. We present the results of this method for 

the x - y model and Q.Ph. D. 

In section V we make a few general comments about the method 

and its possible generalizations, touching on the question of phase 

transitions, and posing some as yet unsolved, mathematical problems. 

The paper ends with two appendices. In the first, we briefly describe 

constraint parameterizations for the Ising model, and in the second, we 

present some results from the theory of Pad& approximants and generalized 

Pade/approximants which will be useful. 
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II. GENERAL METHOD 

A. Definitions of the Models and Notation 

This subsection contains a brief description of the models we shall 

consider. For more detailed discussions of these and related systems, 

see refs. (1) and (3). 

Consider a d-dimensional hypercubic lattice. The classical x - y 

model is obtained by associating a two dimensional vector of magnitude 

1 with each site of the lattice. If we represent this vector by U = e i0 

-TI 5 0 ST, then the partition function for the classical x - y model can 

be written 

s 

Pr: 

ZN = n dUidUiC 6 ( 1% / ‘- l)e i’ 
i 1 

Ti 
cos (e i - e 0) 

1fJ 

where the sum in the exponent runs over all lattice sites, i, and all 

positive and negative directions of the lattice, s. The interactions are 

therefore nearest neighbor, each spin interacting with its 2d neighbors. 

Unless otherwise specified, the subscript N in ZN will denote an 

Nx Nx . . . x N lattice with N d sites in d dimensions. We will assume 

periodic boundary conditions unless otherwise stated. (Other boundary 

conditions will be discussed in section IV. ) 

(2. I) 
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From ZN we may define a function, F 
N 

F = ;lnZN 
N N 

(2.2) 

which is an intensive function, F, in the thermodynamic limit, N - m: 

F = lim 
FN ’ 

$ is an appropriate function of N which can be chosen 
N- m 

in accordance with the boundary conditions, but for periodic boundary 

d 
conditions we will take G = N . FN is related to the usual free energy 

per site, 9, by FN = -(3 yN. 

We can make a character expansion of the function Z by using the 

expansion 

m 

ep cos 6 = 
c In(pieh’ (2. 3) 

n = -CO 

I~@) being the modified Bessel function of order n. Using (2. 3) in 

(2. 1) we have 

m .? - n e A (2.4a) 

‘N =* 

K.J K-J~ J 

=x yn @JR6 (“1 1 K %*o (2. 4b) 
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where 1 runs over all the links, (there is an In(P) with an independent 

index for each link) and K runs over all the sites. The coefficient of 

9 
K 

in the exponent of (2.4a) is a sum over positive directions y, and 

so contains 2d terms which represent all of the links which impinge on 

a given site. The minus signs can be determined by associating an arrow 

with each link pointing in the positive s direction. Links pointing into 

(out of) a site have a +(-) sign in the sum. This sum is denoted as o K 

in 2.4b, and each term becomes a kronecker 6 -function ofcr after K 

integrating over the spins. (We shall sometimes denote b 
I3 

K 90 
by 6 (0,)). 

We note that for d = 1 the sum in (2. 4b) is trivial, and we have 

‘N, s 
(d=i) = 

c 
InNW 

n 

Fs(d = 1) = In I,(P) . 

(2. 5) 

(2. 6) 

The subscript s refers to the x - y (spin) model. and the subscript g will 

sometimes be used to denote Q. Ph. D., or the gauge model. The 

6 -functions in (2.4b) are the kinds of constraints we will want to parameterize. 

We turn now to Q.Ph. D. Imagine again the d-dimensional hypercubic 

lattice. Associate with the link emanating from site j and pointing in the 

0 direction a spin U. 
J.i: 

The partition function for Q. Ph.D. can 

then be written 
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s 
;p 2 u. AU. t A n u. ,u: .\ 

+~6(1 - 1Up j2)e 
p J.p J+P,v J-+“,p JsV 

th. c 

‘N,g = 
lJ dUfdU, 
e (2.7) 

s 

T 

p~cos(e.A te. J +ic;,v^ 
- 8. 

J + 2t.f 
-e ) 

1 J .)I j,; 
=- 

(2lTF 
nd$ e 
P 

-TI 

The product over P is a product over all links, and ?? is the number of 

links when we use periodic boundary conditions. The sum in the exponent 

runs over all elementary squares, or plaquettes of the lattice. 

Using the identity (2. 31, we can write (2. 7) as 

‘IN, g = (2.8) 

For each plaquette we have a factor of In (P), and associated with each 
P 

link is a kronecker d function of yp , which is defined as follows: In 

d-dimensions, there are 2(d - 1) plaquettes which impinge on each link. 

In this (d - l)-dimensional subspace we construct a set of axes by drawing 

(d - 1) lines perpendicular to the link under consideration, and which lie in 

the (d - i) lattice planes which include the link. The positive axes can be 

chosen to point in the same direction as the positive axes of the lattice. 

Now each plaquette which includes link 1 as an edge will lie along either a 

positive or negative axis of our coordinate system. Associated with each 

plaquette is an index, n.. yp is defined as 
1 

2(d - i) 

Yp = c 
q‘n. I 1 

i =1 

(2.9) 
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when the sum runs over all the plaquettes which impinge on link 1, and 

qi = +1(-i) if plaquette i lies along a positive (negative) axis of the coordinate 

system described above. (This constraint is considerably more complicated 

verbally, than it is conceptually. ) 

In one and two dimensions this theory is trivial to solve, and is 

m 

c 

N 

'N, g 
(d = 1, 2) = In p (P) 

n = -03 

where Np , the number of plaquettes in d-dimensions is 

N (d =i) 

Np = 

d(d - 1) Nd 
2 d >1 

(2.9) 

(2.10) 

Fg(d = 1, 2) = In I,(p) . (2.11) 

Notice that this is the same as (2.6) for the spin system in one dimension. 
4 

Finally, we note, from (2.1) that the spin system is invariant under 

a global U(1) transformation 0. + Bi + a, while (2. 7) tells us that the gauge 
1 

theory is invariant under local U(1) transformations 

0. .+-e. A+ 0. 
1, w ‘BP 1 
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In this expression i refers to a lattice site (Q~ can differ from site to site), 

and G runs over all 2d links which terminate on a given site. 

B: Mutilating the 6 -function 

From the point of view of the representations (2.4) or (2.8), the 

feature of the partition function which makes the theory difficult to solve 

is the presence of the kronecker b-function constraints. Our approach is 

to parameterize these constraints in some way which makes the theory 

tractable. Consider for instance 

b(n)=lim e -An2 

A -02 
(2.12) 

which is a valid representation for a kronecker- 6. If we insert representations 

of the form (2. 12) into (2.4) or (2.8) we define a new function R(X) whose 

limit as X + m is the partition function of the theory of interest. While a 

calculation of the exact limit may not be possible, it is possible to calculate 

R(h) for small values of X, and then use extrapolation techniques to 

approximate the result as X - m. 

Consider a simple example: 

2 
axlnIO(~) = a, In CIn(x)6(n) = lim In CIA (x)e- An = lim R(X) . (2.13) 

A -a A -@a 

To calculate the right hand side for small X, we can simply expand the 

exponent ial. Now, we know that R(m) is finite, and so the simplest way 
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to extrapolate the power series is to form the diagonal Pad; approximants 

[m, m] in X which have a finite limit as A + m. (For a description of 

Padgapproximants see appendix B. ) If we define Pm = [m, m] h = co 

we have 

p1 

= i--L- 

4x + 1 

p2 I- 
576 x2 + 216 x 

: 
1152 x3 + 144 x2 + 

(2.14) 
156 x - 1 

These approximations agree well with the exact answer in the large x 

limit. If we expand in x -1 
, 

ax h In = 1 - z;; 1 -- 1 
8x2 

--+ 5 
32x3 

. . . 

we find that for large x,P1 agrees with the first two terms of (2. 151, while 

P2 gets the first three terms right. Although this example is rather special, 

it does have many of the properties that appear in more physical problems. 

Moreover, as we shall agree, the agreement at large x is probably a fairly 

general feature of the scheme. 

Now, there are many other possible representations for the 6 -function 

we could have used in (2.13). For example, 
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or 

6 (n) = lim 
1 

A-m 1-FAl-l 
2 
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(2. Iba) 

sin An 
&(n)=lim xn 

A-lT 
(2. 16b) 

29 
6 (n) = lim e -A(n ) 

;q>O . (2.16~) 
A-m 

What dictates which representation we should use? The choice is determined 

by the exact nature of the problem at hand, the extrapolation procedure, and 

considerations of calculational ease. For instance, in the sample problem 

of (2. 131, had we used the representation (2. 16a) instead of (2. 12). R(A) 

would have been a series of Stieltjes (see appendix B). Much more is 

known about the convergence of Pad6 approximants for Stieltjes series than 

for most other series, and so from a formal point of view, our extrapolation 

procedure would have been under better control. On the other hand, had 

we used generalized Pad6 approximants to extrapolate our calculations 

(see appendix B) both parameterizations would have shared the same 

established convergence properties, and in fact, would have given identical 

results in limit A -m. In the cases of physical interest, e.g. the x - y 

model or Q. Ph. D. , calculational considerations, as well as thermodynamic 

extensivity of the partition function will place further restrictions on our 

choice of parameterizations. 

Let us consider now the theories defined in (2.4) and (2.8). For each 

6 -function appearing in these expressions we insert the parameterization 

of (2.12). The partition functions then become 
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-A 130 2 
K 

Z 
N,s 

= lim RN s(A) = lim (2.171 
A-r, ’ 

and 

-A Cy 
2 

‘N,g 
= lim R 1 p 

. (2.18) x +oo N,g(‘) = ‘,2m c 
v In 1Pk 

PI p 

We notice two things about these representations. First, they have the 

form (for fixed (3) of an ordinary partition function describing a system of 

spins, each one of which can take on integer values, -m 2 n 5 m with a 

single spin probability weighting of I,(p), coupled together in some way with 

a coupling constant, A. In particular, the functions In R(A) appear to be 

extensive functions of N for all A, which suggests that we can develop for 

F the analogue of the linked cluster expansion5 in the coupling constant A. 

Notice that if we had chosen instead a parameterization like (2. 16a) this 

extensivity would not be a property of the RN’s for finite A, FN would not 

have a good thermodynamic limit, and a simple linked cluster expansion 

(LCE) would not exist. These remarks will be elucidated in the next section 

where we develop the LCE. 

The second property to notice is that the RN(A)‘s satisfy, at least 

for finite N, the sufficient conditions ( appendix B, theorems 5 and 6 1 for 

a function to be monotonically approximated by a convergent sequence of 

generalized Pad& approximants. Indeed, we can write 
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RN,s (A) = 

s 

dc e @)6(5 - =JK2) 

0 K 

J 

-AS = e d’#‘(<) 

0 

(2.19) 

and a similar expression for R N ,g(A), which satisfies d$(t ) 2 0, and 

(-aE,j e-AS 2 0 

for all real, positive A, 5 , and j = 0, 1, 2, . . . (The 6 -function in 2. 19 

is understood to have its full weight at the end point, t = 0). Other 

representations (e.g. (2.16a)) also satisfy these conditions, but, as we 

shall see in section IV, this one is preferred for reasons of calculational 

ease. 

The kinds of parameterizations discussed here will not always be 

limited to simple 6-function constraints. For instance, in a theory with 

a non-abelian symmetry the constraints which appear will not be simple 

6 -functions in the character indices, but one will still be able to parameterize 

them by similar methods. Another example of a system with a symmetry 

group different than U(i), and therefore with different kinds of constraints 

is the Ising model (symmetry group Z,) parameterizations for which we 

briefly describe in appendix A. 

Now, in defining the representations (2. 17, 18) we have introduced a 

new coupling constant, A. We might ask whether we can attach any physical 
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significance to this coupling. Consider, for instance, the x - y model. 

Each 6 -function constraint comes from integrating over all the configurations 

of some spin: 

lim e 
-AUK2 

A-m s 

T 

deke 
iBK u, 

(2. 20) 

Now suppose there is some dynamical reason why the major contribution 

to the partition function. comes from small values of 8 K. Then we could 
i8 o 

expand e 
K K without making too much of a mistake. This expansion in 

-Au 2 

powers of o k2 could be qualitatively identified with an expansion of e K 

(other parameterizations could make the identification closer), which might 

be good for small enough A. When the lattice temperature is near zero 

(p very large), we expect that the spins will want to be more or less lined 

up, and the major contribution to ZN will come from VaheS of the Ok’s 

near zero. RI this case, RN(A) for some small A should be a good approximatior 

to RN(m). So, in general, there should be some AC(p) such that 

RN(A s AC) = RN(m ), and the larger p is the smaller Xc should be. NOW 

consider an approximant, like a PadLapproximant which is designe.d to 

match RN(X) for small A. Suppose we form a low order approximant, 

H(A) to R(X) which is accurate for A 5 Ai<< Xc. Since RN(X 5 X1) f RN(m), 

RN(A) will have to vary a lot as we take A +EO, and there is no a priori reason 

why the extrapolation H(A) + H(m ), which is smooth, should track the 

extrapolation of RN. To QUt it another way, there is a lot of important 
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information in the partition function which has not been used in building 

H(A). If, on the other hand, Xc is small enough so that H(A- Xc) = R 
N 

(A-’ A ) 
c 

then, since 8,R,(A > Xc) = 0, aAH(A - Xc) = 0, and if the extrapolation 

procedure H(A) - H(m) is smooth enough we might expect that 

H(m)=H(A+A)zR (AdAc)=RN(m). 
c N 

Inotherwords,ifH(eo)has,in 

principle, anything at all to do with RN(m ) (e. g., if the approximants 

eventually converge to R (m )), then, an approximant of some given low N 

order should be more accurate the smaller AC is, i.e., the larger p is. 

This is because for large p. most of the important information is contained 

in the first few terms of an expansion in powers of A. This heuristic 

argument accounts for the agreement at large x of (2.15) and (2.14) (this 

approximation for small x is pretty awful) and is also supported by the 

computational results presented in the next two sections. 
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III. EXTRAPOLATION TECHNIQUE I: 
PADS APPROXIMANTS TO F 

In this section we discuss the simplest extrapolation procedure based 

on Pad& approximants. It consists of using a parameterization of the type 

described in the last section, calculating some quantity of interest, and 

constructing a sequence of Pad& approximants which are evaluated at the 

physically relevant value of the extrapolation parameter, A. In the case 

where A must be extrapolated to m, only the [n, n] Pad; approximants 

survive as candidates for this technique. But for psrameterizations such 

as (2. i6b), other sequences of approximants may work. 

From the discussion of appendix B, it is clear that for an arbitrary 

parameterization we will be unable to make rigorous statements about the 

convergence of these Padk approximants. One might suppose that the best 

bet would be to choose the Stieltjes parameterization, (2. Iba), and construct 

Pad6 approximants to RN(A) which we will now be able to write as a series 

of Stieltjes. That is, as co 

RN,s (A) = 

s 

1 
dE i+xg 

0 

(3.1) 

and a similar expression for R 
NJ FAT 

(A). Unfortunately, this simple procedure 

fails because the logarithm of the Padk approximants to (3. 1) are not really 

extensive in the thermodynamic limit. 
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To illustrate this point, consider the l-dimensional x - y model with 

the parameterization (2. 16a). Expanding in powers of A, we find 

RNs(A) = xi21 (P)[i+A::(ni-ni+1)2]-1 
in\ e “I 

= MO 
N - A2NM0 N 

p2 + A24NM0 
N 

p4 +(2N - 3)~~’ (3. 2) 

where 

Mr = 
c 

nrIn(p) = aer e p cos e 
I e=o ' 

-m 

(3.3) 

‘i- = Mr/Mo 

and the expansion to order A2 is valid for N 2 3. Note that given MO, 

the rest of the M, can be easily generated by the recursion relation 

r-i 

Mr(P) = P 
c 

(r - 1 )I 
j!(r - 1 -j)! sin i (j + 1 - r) 1 Mj(p). (3.4) 

j =O 

Calculating the [I, 41 Pad: to RN and evaluating it at A = OD, we find 

D,(P) = MON - 
NMN 2 

0 p2 

ti4 + (2N - 3)p2 
2 . (3. 5) 
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Now, we are really interested in approximations for intensive 

thermodynamic quantities, so we compute from Dt an approximation to 

FN(P), namely 

iln D,(p) = ln MO + 
4 p;:;2:::,;;:] (3. 6) 

which in the limit N-t m becomes just the trivial first term, In M o =P. 

This same unhappy situation persists for all Pad& approximants, Dn, to Z 
N 

where n << N. That is, if we simply take the thermodynamic limit N + m 

we always recover only the trivial zeroth order approximation for the free 

energy. Moreover, it does not help to take the logarithm of the expansion 

(3. 2) and Pade/ that. The required cancellation between terms of order N2 

in the coefficient of A’ will not occur, and when N + m no non-trivial 

corrections will survive. As we stated before, this is because the approximants 

ln D,(p) are not non-trivially extensive. 

This same problem crops up in connection with the extrapolation 

scheme discussed in the next section. There we will treat it using a trick 

due to Bessis, et al.’ -- 3 in which the thermodynamic limit is taken in a 

particular way. But we may also circumvent the problem by replacing the 

parameterization (2. 16a) by the form (2.12). In this case R(A) will have 

the correct extensivity properties for a partition function with coupling 

constant A. The quantity 
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1 
f,(A) = -zJln R 

N N, s(” 

will therefore be properly intensive, and the diagonal Pad& approximants 

to this quantity will give non-trivial approximations to F when A -+a . 

In addition, with this parameterization we can establish a linked cluster 

expansion which makes the terms in the expansion of f,(h) relatively easy 

to calculate. Unfortunately, fs(A) will not generally be a Stieltjes series, 

and so it is difficult to prove convergence of the approximations. 

Let us turn now to the calculation of F using this approach. The 

partition functions with the parameterization (2. 12) are displayed in (2.17) 

and (2.18). The powers series in A, the A-Q limit of which gives F, can 

be generated via a linked cluster expansion. The linked cluster expansion 

(LCE) is a diagrammatic algorithm for calculating thermodynamic averages 

in a power series of some parameter. It is an expansion which is formally 

(i. e., combinatorically) similar to a perturbation expansion of connected 

Feynman diagrams in field theory in that spurious, disconnected diagrams 

are automatically removed, and the remaining connected diagrams are 

properly modified. The linked cluster expansion will now be described 

(but not derived) in some detail, mainly for the benefit of readers who may 

be unfamiliar with the technique. A more complete discussion can be found 

in Refs. (5). Those familiar with such calculations or uninterested in these 

details may skip to the paragraph preceding equation (3.9). 
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The expansions for both our theories are quite similar. For definiteness 

let us first consider the x - y model, (2. 17). We may write 

m 

f,(A) = dp + 
c 

Cj(P)(-d . 

j =1 

(3. 7) 

The Cj are generated as follows: The expansion includes two kinds of 

interactions represented by an x end a line, as in Fig. 1. Primatively, 

the x represents the effects of the terms =ni 2 in the ak’s, and the line 

represents the effects of the terms =n.n. I,+$ Define the rank of the x to 

be two, and the rank of each end of the line to be one. To calculate Cj, 

first draw all connected topologically distinct graphs which can be made 

from a total of j x’s and lines such that the total rank of each vertex is 

even. The graphs for j = 4, for instance, are shown in Fig. 2. In a general 

linked cluster expansion there are, in principle graphs with vertices of 

odd rank, such as those of Fig. 3, but in our case these turn out to be 

identically zero. For the x - y model, each graph is evaluated according 

to the following rules (subject to the caveat discussed in comment ii): 

1. ) For each x, a factor of 2. 

2. ) For each line, a factor of 2. 

3. ) For each vertex of rank m, a factor Lm (see below). 

4. ) For each k identical interactions a factor I/k! . 

These rules deserve the following comments: 
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i . ) The factor of 2 for each x follows from the fact that each 

link ni, appears in two6 -functions (a line has two ends). 

ii. ) The factor of 2 for each line reflects the factor of two that 

accompanies terms like n n n in the square of o 
K,$ K,” K * One might 

wonder why the factor accompanying a line is always +2, since it is 

clear that in o 
2 
K there are negative as well as positive terms like 

n s,$ n K,C * This can be understood as follows: consider a term 

coming from the expansion in A of R( A) and let us represent it by 

a graph, which will have the same structure as a LCE graph. Since 

a non-zero graph has only vertices of even rank, an arbitrary graph 

will be composed of the intersection of closed two-dimensional 

manifolds each one of which is circumscribed by a closed chain of lines. 

For instance, the graph of Fig. 4 can be decomposed as indicated. 

Now, suppose we religiously inserted the * signs associated with the 

bilinear terms in the expansion of the exponential in (2.17). We want 

to show that the overall sign of each closed chain is positive. To do 

this refer to Fig. 5. An arbitrary closed path can always be decomposed 

for purposes of this argument into a product of elementary closed paths 

in the manner indicated. (For graphical simplicity we have stayed in 

one plane of the lattice, but this is not necessary. ) Since the dashed 

lines are always inserted in pairs the overall sign of the graph is not 

changed. So the overall sign of the graph is the same as the product of 

the signs of the elementary graphs. In d-dimensions all of the elementary 
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graphs apparently consist of from two to four lines. The two and three 

line graphs refer to one site only, as in Figs. (6a - 6~). For such closed 

graphs in which there are no sign changes associated with the link indices 

as the circuit is traversed, it is easy to see that the overall sign is f. The 

exceptional elementary graph is 6d which is also positive. Since all elementary 

graphs appear to be positive, all graphs made up of arbitrary closed circuits 

are positive, and this positivity clearly persists in the linked cluster 

expansion. We have been unable to find any exceptions to this rule, but 

we have not rigorously proved that they do not exist. If there are non-positive 

elementary graphs, the rules will have to be modified, and more care will 

be necessary when counting configurations of the graphs in the lattice (see 

the discussion below). 

iii. ) The factors Lm are the Mayer semi-invariants of the ~~(3.3). 

They are defined by inverting the equations: 

P2 
= L2+L12 

(3.8) 

p3 = =3 + 3L2Li + Li 
3 

2 2 + 6L2Ll f L 4 
p4 

= L4 + 4L3Lf + 3L2 
1 

etc. 
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The coefficients of the terms in the expression for p are the number of r 

ways r objects can be divided into the classes represented by the L’s. For 

example, in the expression for ~4, the coefficient of L L 2 1 
2 is 6 because 

there are 6 distinct ways in which 4 objects can be divided into one group of 

two and two groups of one. This, incidentally, explains why all the non-zero 

graphs have only vertices of even rank. Since all the pr with r odd are zero, 

so are all the odd L 6 
r’ 

iv. ) An identical interaction means either the same x at the same 

point or the same line between the same two vertices. So, for example, the 

graphs of Figs. 2a and 2e each carry a factor of i/4!, Zb and 2d both 

have a factor of 1/2! x 1/Z! , while Zf has no such symmetry factors. 

After all the graphs of a given order are computed, they are multiplied 

by their appropriate geometrical weight and are added together to give the 

coefficient, Cj. The geometrical weight is the number of distinct ways in 

which the graph can be embedded in the lattice per lattice site. Consider 

for instance the graph of Fig. 2d embedded in a two-dimensional lattice. 

The kinds of configurations this graph can have are shown in Fig. 7. Note, 

in particular, that in Figs. 7b and 7d the graph doubtes back on itself. 

These configurations are to be included, but the value of the graph remains 

the same--it is still graph 2d even though it looks like graph Ze. 

Calculating these geometrical weights is the only hard part of the linked 

cluster calculation. Some of the counting problems are particularly 

fascinating in d-dimensions. 
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If not all graphs of a given topology have the same value (e. g. if we 

have missed some elementary graphs, the signs may vary), then the 

prescription given here for calculating F must be modified. The nature 

of the modifications can be understood by remembering that, in any case, 

F is just the sum over connected graphs of the type we have described 

where the vertices can freely wander over the entire lattice. For more 

details see the article by Wertisin the first work of reference 5. 

The expansion we have discussed is for the x - y model. The computation 

of f (A) for Q. Ph.D. is much the same. 

teri is d(d2- i) 

The constant (A independent) 

p instead of 8d in (3.7). The linked cluster graphs for 

Q..Ph. D. are quite similar. The graphs to be computed look like the graphs 

for the x - y model, only now a vertex represents a plaquette (rather than 

a link) of the original lattice, and a line segment subtends a link (rather 

than a site) of the lattice. Furthermore, the vertex factors are similar. 

Rules 3 and 4 are the same, and rule 1 is replaced by the rule that an x 

carries a factor of 4. In this theory we are again faced with the problem 

of varying signs in front of terms ninj. Unfortunately, not all of the 

elementary graphs for this model are positive, and so we are not able to 

construct an argument similar to the one associated with Fig. 5 for the x - y 

model. It may therefore be necessary to revert to more or less explicit 

counting of the linked cluster graphs on the lattice. Some simplifications 

are possible but they are too technical and inconclusive to describe here. 
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This completes the discussion of the linked cluster expansion, and 

we are now ready to present the results of some low order caluclations. 

We have computed the first order approximation to F, P1 for the d-dimensional 

classical x - y model. Since F is exactly calculable for d = 1, we have 

computed P2 for d = 1 to see the improvement. For d-dimensional Q. Ph. D. , 

we have computed Pi. Here we are also able to compare with the exact 

result for d = 2. 

Consider first the x - y model. The expansion to order X2 for f is 

fs(A) = dp - XZd)3 + A2)3d[(3(4d + 2) + 21 

and 

P 
1, s 

= cl. il(A =m = W ;;;;;;;;; . 

The second approximant, P2, for d = 1 is fairly straightforward to 

compute, and can be written in the following, unilluminating form: 

P2(d=l) = )3+ 
2t1t2t3 - t23 - t4t12 

t4t2 - t3 
2 

(3.9) 

(3. 10) 

(3. ila) 

where 
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t2 = 6p2 + 28 

(3. lib) 

t3 
= $3+24p2+;p 

t4 
= !G$p4+ +3+54p2+4p . 

In Fig. 8 we plot for d = 1 P1/ p, P2/ p, and compare it to the exact 

result $ In I,(p) (see 2.6 ). We see that the larger p is the better the 

approximation is. Moreover, for larger p,P, is a better approximation 

than Pi. On the basis of our heuristic arguments and the mathematical 

example of (2.13 - 15), we expect that higher order approximants will 

show convergence (although perhaps not uniformly) over wider and wider 

ranges of p. 

In Fig. 9, we present PI/t3d for integer values of d, 2 c d 5 6. Note 

from (3. i0) that in the limit d - m, Pi/Pd -. 1, independent of p. for 

p > 0, a result we expect from saddle point methods. 

Turning now to Q.Ph. D. , we find for the expansion of fg(X) 

fg(h) = d’;- ‘)p - )&-J(,-j - l)p + X22d(d - i&3[2 +p(2d * 111 
(3.12) 

and 

P 1, g = [I. ilJh =co = d’d2- “‘P[;;;:r:;:;J (3.13) 
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2p1 
In Fig. 10, we have plotted d(d :fJa for 2 5 d 5 6, as well as the 

exact result for d = 2, F(d = 2)/P. Not surprisingly, these curves are 

qualitatively similar to those in Fig. 9 for the x - y model, but lie somewhat 

lower for the same dimension. Migdal (Ref. 4) has argued that one might 

expect the critical behavior of a locally invariant theory in d dimensions 
g 

to be the same as a theory invariant under a global transformation of the 

same symmetry group in ds dimensions when d 
g 

= 2ds, at least when the 

critical temperature is fairly small. Let us take our approximations 

P 
i>!z 

and P 
1,s 

which should be most 

ask what the relation between d and 
g 

free energy per degree of freedom. 

we find 

accurate for large p (small T), and 

d- must be in order to net the same 
S 

2P Cd 1 

Ewatix “g’p”gf 1) and 

-Ps (ds ) 

ds > 

d 
g 

= 2ds+; (3.14) 

quite close to Migdal’s conjecture. The extra term + is likely to be an 

artifact of the low order of our approximation. 
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IV. EXTRAPOLATION TECHNIQUE II: 
GENERALIZED PADE APPROXIMANTS 

In the last section we described a straightforward, plausible method 

for extrapolation to the value A = m, the point of physical interest for us. 

In this section we discuss a somewhat more complex, but more powerful 

method, for which rigorous convergence properties can be proved. The 

2 
extrapolation procedure has been described by Bessis, Moussa and Villani 

in the context of usual perturbation theory in statistical mechanics, but can 

also be used with our representations. 

The method consists of first calculating generalized Pade’ approximants 

to the partition function ZN of a system with a finite number of sites. Under 

certain conditions these approximants form a sequence of converging bounl s 

to ZN’ and their logarithms, therefore, form a converging sequence of 

bounds to FN defined in (2. 2). Suppose that FN is a monotonic (say, 

monotonically decreasing) function of N, at least for N > No, and suppose 

that for finite N we have a sequence of converging upper bounds to FN. 

Then, we can use the following theorem7 to establish a sequence of converging 

upper bounds to F : lim 
N--a3 

FN: 

Theorem A: 

Let 

FN 
(I)> F (‘I >... > F (j)> 

N N . . . F 
N (4. 1) 
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be a monotonous sequence of converging upper bounds for N > Ni. Suppose 

that for N > No (NO 2 N1) FN reaches its inf for N =m (F, : F). Then 

for N > No FN (j ) has an inf, F(j) which satisfies 

$) > $2) > 
. . . > F(j)> . . . F (4.2) 

and 

Sim F(j) = F (4.3) 
j-m 

This rather circuitous procedure for approaching the thermodynamic 

limit is necessitated by the fact that the approximants, FN (j ) do not have 

a good thermodynamic limit, That is, F can be written as 

F = lim FN = lim lim F (j) 
N (4.4) 

N+ m N-+m j-rm 

but the limits cannot be freely interchanged. The use of theorem A defines 

a sequence of points in the N - j plane along which we may proceed to the 

correct answer. 

Two general ingredients are required to use this method. First, 

we must define approximants which bound and converge to the finite N 

partition function. For our problems GPA’s will accomplish this, but in 

principle other approximation schemes could be used. Second we must 

determine that FN is a monotonic function of N. Since we are dealing with 

finite N, this property may be sensitive to the choice of boundary conditions. 

This will be discussed further below. 
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As a first example, consider the x - y model with periodic boundary 

conditions. We may write the function RN s(X) as 

J 

m 
R N s(A) = dcK(A, 5 )d&E) 

2 0 
(4.5) 

where d $(c ) is the same as that appearing in (3.1) and the form of Ks(A, 5 ) 

depends on how we choose to parameterize the G-function constraints in 

character space. Since d &E) 2 0, we may apply theorem 6 of appendix B 

if we choose a kernel satisfying (B. 17). The Stieltjes kernel of (3. 1) is one 

choice, but for us, a calculationally more convenient choice is the exponential 

K(A, 5 ) = e -XE 
(4.6) 

corresponding to the parameterization (2. 12). (Both choices, in fact, give 

identical GPA’s for RN s(V when A + m, the value of interest. ) 

Using the prescription of appendix B, section b, we can form the 

GPA’s, Bn ,(A) and B 
n, 

-,(A) to (4. 5). By theorems 5 and 6, these will 

provide the best converging bounds for finite, real positive A: 

B 
n, -1 

(A) 5 RN(A) 5 Bn ,(A) 

and 

lim B, j(V = RN(X) . 
n-fm ’ 
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Now, with parameterization (4. 6) we are interested in the limit 

A -cm. In particular, we want to compute B n, j(“’ as approximations to 

RN(m) = ZN. We clearly have 

lim lim 
A--m 

Bn~ j(A) = RN(m) = ZN , 
n-03 ' 

but it is not clear that the order of the limits on the left-hand side can be 

interchanged. In fact, for j q -1 the interchange is certainly not justified 

since B n -*(a) = 0 for all finite n. However, RN(m) is finite, and RN(A) 

is sufficiently well behaved so that we can prove that the limits can be 

interchanged for j = 0. 
8 

The argument is given at the end of Appendix B, 

and rigorously establishes that these approximants provide a set of monotonically 

converging upper bounds. 

To compute the Bn o we first need the power series expansion in A 

of R 
N 

(A). Since we work at finite N, the coefficients will depend on our 

boundary conditions. It is simplest to choose periodic boundary conditions, 

because then we can use the results of the linked cluster expansion, which 

considerably simplifies the combinatorics. The reasoning is as follows: 

define 

RN(A) = C,iiN(A) 

where 

co 

EN(A) = 1 + (4. 7’ 
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The coefficients Fj of A3 will in general contain terms of order fi3, 

fij - 1 
) . . . in With periodic boundary conditions there will be no terms of 

order fi’. Because we used kernel (4.6), taking the logarithm of a removes 

the terms porportional to Gq, q > 1 from all the coefficients. Dividing by 

N we have an intensive quantity. But this is exactly what is calculated in 

the linked cluster expansion. That is, we lose no information in the limit 

N - m if we use periodic boundary conditions. (Note that 5 In CN is also 
N 

independent of N. ) The only caveat is that we must remember to stick to 

lattices which are large enough to accomodate the largest diagram in the 

expansion. So, for instance, calculating to order Af require a lattice of 

at least 1 sites on a side. 

With this in mind, we can write 

Gf (A) 
RN(A) = e (4.8) 

where f(A) is the power series in A calculated according to the linked 

cluster expansion. RN(A) can now be expanded in a power series in A. 

Essentially this amounts to reinserting the cumulant formulae (3. 8). Remember 

that (4.8) is not valid if we have boundary conditions which are not periodic. 

In that case there will be terms which disappear in f(A) in the limit N -m , 

and which are not recovered in (4.8). 

From the power series expansion of RN(A), we can compute the Bn ,(A) 

as described in appendix B. In the limit A + m the B n 
, 

,(A) will provide 
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converging upper bounds to ZN, so their logarithms will give converging 

upper bounds to F N’ 
For the one dimensional x - y model, with periodic 

boundary conditions, we have 

FN = klnZN = lnIo~P~+“ln~+ $ETlP$ 

where 

I. (P’ 
EjW’ = +p- . 

Since 0 5 Ej(P) < 1, it is clear that FN in (4.9) is a monotonically 

decreasing function of N, and we may use theorem A of this section to 

establish a monotonically converging sequence of upper bounds to F. 

We have computed B1 o(A = m) and B2 o (A = m) for this model for a 

range of values of N. In Fig. 11 we plot 

$1, Bn 
> 

o(A = ~0) 

for n = 1, 2 as a function of N for several values of p. (For p = 100 

B2,0 <Bi,O 
also, but the difference is not visible on this graph. ) In 

Fig. 12 we plot the inf. of these curves as a function of p and compare it 

with the exact result, i In I,(P). Notice that even the first order bound is 

quite good at large p. When p = 100 the ratio of inf of (4. IO) with n = 1 

(4.9) 

(4. IO) 
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to the exact result is * 1.03089 while the corresponding ratio with n = 2 

is 41.03010. For smaller j3 the bounds are less good, but the improvement 

is more dramatic. These observations are consistent with our arguments 

that the approximation scheme should be best at low temperatures. 

Now suppose FN with periodic boundary conditions is monotonically 

decreasing also for higher dimensions. We have assumed this to be true 

and have computed the lowest order bounds (n = 1) to F for both the x - y 

model and Q. Ph.D. in d-dimensions. In Fig. 13 we present these bounds 

normalized by (dp)‘* as a function of p for the x - y model for integer 

dimensions, 2 5 d 5 6. Fig. 14 is the corresponding graph for Q. Ph. D. 

(with normalization 2[d(d - f)p]-‘). Gn this graph, we have also drawn 

the exact Q. Ph. D. result for d = 2. (Note that monotonicity in N of FN 

for Q. Ph. D. in two dimensions can be easily demonstrated. ) 

Since it is relatively simple to compute the Bn 
> 

o for a theory with 

periodic boundary conditions, these will generally be the favored choice, 

assuming that the corresponding FN are monotonic. But it is interesting 

to compute bounds with other boundary conditions to see how they compare 

with those computed for the periodic lattice. To this end, let us examine 

the two dimensional x - y model with fixed edge boundary conditions. First 

we will prove that the FN are monotonic for this theory, and then we will 

discuss the bounds. 

Consider a square (N + 2) x (N + 2) lattice. The boundary conditions 

are defined as follows: The spins along the edge are fixed at Oi = 0 and 
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the coupling constant between two adjacent edge spins is half the usual 

coupling constant. The partition function can then be written 

zN 
= .-2(N + 1’13 II dBs IIe 

P coq - ei +,“’ ( 
n 6(eb) (4. ii’ 

S P b 

where R’ runs over all spins on the boundary. 
b 

We may now define FN 

as in (2. 2) where N” is the sum of the spins times their weight factor, W. 

The weight factor is determined as follows: each link impinging on a spin 

has coupling constant of p or $3. o is 1/4p times the sum of the coupling 

constants of the links impinging on a spin. For an internal spin, w = 1, 

for an edge spin, w = i. and for a spin on the corner of the lattice o = $. 

NOW, consider the function 

-Au 
2 

G(A) = 
c 

n 1 (P’ n 6’“s, ’ l-I I (P/Z)rlI (p)n e sI 

+[ I,, P2 nfi s1,s2 1 blab2 nbi bI nbI sI 
. (4. 12) 

Look at Fig. 15. Let P 1, si, and bi (1 2, s2 and b21 refer to the internal 

links and spins and external boundary links in the left (right) half of the 

(N + 2) x (2N + 3) lattice, respectively. The bI and sI refer to the internal 

boundary joining the two (N + 2) x (N + 2) lattices which make up the 

lattice of Fig. 15. It is easy to see that G(O) = ZN2 while G(a) = TN, 

the partition function of the doubled lattice. Since 8,G(A) < 0, we have 
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z, <ZN2 . (4.13) 

Using the definition of N” given above we easily see that (4.13) implies 

FN < F 
N ’ (4.14) 

We can repeat the same procedure doubling the lattice in the other direction 

and we conclude that 

F 
2N+icFN ’ (4.151 

So FN for a sequence of N’s is monotonically decreasing. It is clear that 

the argument can be applied more generally, and so FN will be a decreasing 

function for all N. It is also clear that the argument can be applied in 

higher dimensions, and also for many other systems including Q. Ph. D. 

We discuss now the bounds obtained with these boundary conditions. 

We have calculated the lowest order bound to F for the square lattice. 

The calculation of the B1 o for various N and (3 is straightforward. The 
, 

bounds derived from these calculations are summarized in Table I. In 

all cases the calculation with periodic boundary conditions gives a better 

bound. It is interesting to note, in the case of the fixed edge boundary 

conditions the value of N for which F 
N 

attains its minimum. This is Nmin in the 

last column of the table, and corresponds to a (Nmin + 2) by (Nmin + 2) lattice. 

With periodic boundary conditions the minimum is always obtained for a 

3 x 3 lattice. It seems, then, that for low orders the choice of boundary 
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conditions can have a significant effect on the size of the bound, particularly 

for smaller values of p. For large p the bound is less sensitive to the 

choice of boundary conditions. This is not surprising, since the only 

essential difference between fixed edge and periodic boundaries is that 

the spins on the boundary are frozen in the former case. At low temperatures 

the major contribution to FN comes from configurations where the spins 

are almost lined up anyway, and so the difference between the two types 

of boundaries becomes less significant. 

V. COMMENTS 

We would like to make a number of comments about the work presented 

in this paper. 

i) The convergence of the approximations of section III and the bounds 

of section IV might be accelerated by the following device: Denote the j 
th 

approximation to a function, F, by A., and suppose that A = F. Form 
J m 

m 
S(T) = c ‘Aj - Aj-$j 

j =0 

(5.1) 

where A -1 : 0. S(1) = F, and the expansion of S(i) to k th order is A 
k’ 

We can now form the [n. n] Pade/ approximants to S( T), evaluated at 

T = 1, which, if the coefficients in (5.1) are reasonably smooth, should 

provide a better approximation to F than AZn. Of course, in the case where 

the Ak are bounds to F, these Pad& approximants are not in general guaranteed 
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to be bounds. We have carried out these calculations for the one-dimensional 

x - y model using both the approximants of section III and the bounds of 

section IV. Except for the approximants of section III when p <C 1, the 

[+. 11 Padg of (5.1) gives a better approximation than the corresponding AZ. 

ii) With the exponential parameterization of the b-function there is a 

very close relation between the logarithm of the B, 
, 

o’s of section IV, and 

the straight Pade’ approximants for the free energy. The coefficients of 

the power series for the Pad6 of the free energy (section III), are just the 

cumulants of the coefficients in the expansions of section IV. We can now 

ask, if the B 
n, 0 

‘s at A = m converge to 2 N’ under what conditions will the 

P, of section III converge to F? 

iii) It is worth pointing out that for the lattice gauge theories, our 

approximations are “not gauge invariant” m the following sense: Before 

making the character expansion, one may make a gauge choice in configuration 

space which fixes some of the link variables. Only the remaining, dynamical 

links will then be parameterized as ~5 -functions, and so the coefficients in 

the expansion in powers of A will be different. Of course, there will still 

be convergence to the correct answer even with a gauge choice, but the 

rate of convergence may differ. We have not examined this dependence 

closely. 

iv) Our procedure was formulated in character space and, as we 

argued, is in some sense a low temperature approximation. A similar 

technique suggests itself in which the usual configuration space expression 
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of Z is used (Eq. 2.1). A sufficiently large set of a priori independent spins 

is introduced at each site with, for example, one member of the set coupled 

to the neighboring site in each direction of the lattice. All the spins at 

a site are coupled together through the use of 5 -functions. The theory can 

now be approximated by parameterizing and expanding the 6 -functions. 

One might expect such an approximation to be best at high temperatures, 

since the starting point is a collection of independent interactions which 

might naively be expected to dominate at high temperatures. 

v) One important question which we have not been able to address 

very well is the question of whether the system undergoes a phase transition. 

The quantity we have been dealing with, F, is expected in most cases to exhibit 

only a soft singularity near a phase transition, to which numerical approximations 

are rather insensitive. What is needed is either a mathematically firm 

scheme for approximating quantities with strong singularities, or a method 

of integrating our approximation scheme and the renormalization group. 9 

The approach we have outlined in this paper is clearly rather open 

ended. There seems to be a lot of room for massaging the techniques to 

try to obtain better results. It is also clear that there are many possible 

applications for these schemes, some of which will be discussed elsewhere. 

It is hoped that one will be able to apply the general method fruitfully to a 

variety of theories in which a systematic non-perturbative approximation 

procedure is desired. 
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APPENDIX A 

The Ising model is defined by the partition function 

P zAsisi+Gn 
z = c 

e i,cI 
si = il 

(A.1) 

c 

ps.s. 
x lie 1 I+: 

1 
Si = *I 

where 1 runs over all nearest neighbor links of the lattice. The character 

expansion of the exponential takes the form 

ps.s. 
e t J = cash (3 + sisj sinh p 

1 (A. 2) 

Inserting (A. 2) in (A. 1) and doing the spin sums, we have 
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1 * 
z = (1 + (-1) y, (A. 3) 

where o is the sum of all the ni associated with links that impinge on site 
K 

K. We parameterize the last factor in (A. 3). Notice that this is not a 

simple 6 -function. One can invent a large number of parameterizations 

for this object, but two of the most useful are the following: 

and 

1 + (-I? = lim 2e -A[1 - (-dl 
X-m 

d 

-A II (u-2j)’ 

1 + (4 = lim 2e j =O 

A -cJ 

(A.4) 

These expressions will both yield functions, F(X) which are properly 

intensive in the thermodynamic limit. Furthermore, these kernels satisfy 

the conditions of Theorem 6 ( appendix B) and so we will be able to derive 

converging upper bounds to F from these expressions. 

(A. 5) 
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APPENDIX B 

In this pedagogical appendix we discuss a number of results (well-known 

in certain circles) concerning Pad6 approximants and generalized Pad6 

approximants (GPA), which we have found useful. More extensive discussions 

of these and other related ideas may be found in any of a number of books 

and review articles. 
10 

a. Ordinary Pade/ Approximants 

Consider a power series 

m 

F(z) = 
c 

a.zJ . 
.I 

j =O 

The [ n, m ] Pad: approximant can be written 

m 

)‘b,zj 

[n, ml(z) = 

P,(Z) .y J 

Q,(z) = 

+ i 

L cj zJ 

j =o 

The b’s and c’s are determined by solving the equation 

F(z )QJ z) - Pm(z) = 0 

after dropping terms of order z 
n+m+l 

and higher. By convention, 

co is usually taken to be one. 

EL 1) 

63 2) 

(B. 31 
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Except for the special case of Stieltjes series (See below) it is 

difficult to establish general convergence theorems for sequences of Pad& 

approximants. For rational functions of course, the [n, m] Pad; will be identica 

to the function for large enough n, m, and so there is no convergence 

problem. Typical of the theorems on convergence for a general series 

is the following: 

THEOREM 1 : Let Pk(z ) be any infinite sequence of [ n, m] Pad& 

approximants to a formal power series where n +m tend to infinity with 

k. If IP,(z)( is uniformly bounded in any closed, simply-connected 

domain D1 containing the origin as an interior point and 1 Pk(z I I-’ is 

uniformly bounded in any closed simply-connected domain D2 containing 

the origin as an interior point, then the Pk converge to a meromorphic 

function f (z ) in the interior of the union of D1 and D2’ 

Even where no formal proof of convergence exists, some subsequence 

of the Pad6 approximants with n, m -m often seem to give good (convergent? ) 

approximations to the original function, even far outside the domain of 

convergence of the power series. 
11 

On the other hand, this is not always 

true and one must generally exercise some care. In the words of Chief 

Dan George, “Sometimes the magic works, and sometimes it doesn’t. ,,I2 

For Stieltjes series the situation is considerably better. A series of 

Stieltjes is a series 

m 

G(z) = 
c 

gj(-z P (B. 4) 

j =O 
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with 

gj = 

where o(U) is a bounded, non-decreasing function taking on infinitely many 

valuesin u Cm. Roughly, this means d$ (U) 2 0. (B.4) need not 

converge. Note that this is equivalent to the representation 

s 

m 

G(z) = d4 (II) 
1+zu . 

0 

For these series we have the following theorems: 

THEOREM 2 : If Egj(-z r’ is a series of Stieltjes, then the poles of 

the [n, n + j], j 2 -1, Pad& approximants are on the negative real axis. 

Furthermore, the poles of successive approximants interlace and all the 

residues are positive. The roots of the numerator also interlace those of 

the denominator. 

THEOREM 3: The Pad6 approximants for series of Stieltjes obey the 

following inequalities where G( z) is the sum of the series C gj t- z )J, and 

z is real and nonnegative. 

(+ )I + j 

i 
[ n+l, n+l+j]-[n, n+j] 2 0, 

> 

(-l)*+j Cn,n +j]-[n -1, n+j+l]}Z 0, 1 

fB. 5) 

(B. 6a) 

(B. 6b) 
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[ n, n ] 2 G(z ) 2 [ n, n - 11 

[a nl 1 2 G’(z) 2 [n, n - 11’ , 

(B. 6c) 

(B. 6d) 

where j 2 -1. These inequalities have the consequence that the [n, n ] 

and [n, n - 11 sequences form the best upper and lower bounds obtainable 

from the [n, n + j] approximants with a given number of coefficients and 

that the use of additional coefficients (higher n) improves the bounds. 

THEOREM 4: Any sequence in n Of [n. n + j] Pade*approximants for a 

series of Stieltjes converges to an analytic function in the cut complex 

plane (-m 5 z 5 0). If, in addition 5 -1/(2p + 1) drverges, then all 
p=i 

(gp) 

the sequences tend to a common limit (this condition is roughly equivalent 

to Igp 1 5 (2p)l 1. If the gp are a convergent series with a radius of conver- 

gence R, then any [n , n + j] sequence convergences in the cut plane 

(-co 5 z 5 -R) to the analytic function defined by the power series. 

b. Generalized Pad& Approximants 

Consider a function with a representation of the form 

m 

F(z) = b(z, u)db(u) (B.7) 

with d$(u) z 0. The method of generalized Pad6 approximants we shall 

discuss consists, in essence, of approximating d$(u) by a sum of 6-functions 

whose weights and positions will be determined by comparing the approximations 

with moments of the original function. 
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We introduce (in Baker’s notation ) a set of approximants: 

n 

Bn jW = 
c 

amb(z, urn) + 8 kMz,u ) 
U 

m=l I (B.8) 
u =o 

where n = 1, 2, . . . and j = -1, 0, 1, 2, . . . When j = -1 the second sum 

in (B. 8) is absent. We restrict ourselves in (B. 7) to kernels b(z, u) which 

can be formally expanded as 

b(z, u) = 
c 

b,(z )(-ulm . (B.9) 

m=O 

Denote 

cl = uPd&u) . 

0 
(B. 10) 

Inserting (B. 9) into (B. 7) and (B. 8) and equating the two we have 

1 
j ap c-u, Jrn - (-1 lrncm + c b (ziPm(-lIm = 0 . (B. 11) 

m 
m =0 

The apa P,, =due are determined by setting the coefficients of the first 

2n+j +i bm ‘s equal to zero. Thus we have 
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n 

c 
a1 (up lk + P, = Ck 05k5j 

P =1 

(B. 12) 

n 
c c’p!ue)k = Ck j<ks2n+j . 

P =I 

If the kernel b(z, u) is the Stieltjes kernel: 

b(z,u) = &y (B. 131 

then the approximants B n j(z) are exactly the ordinary [n, n + j] Pad; 

approximants to the function F(z) defined in (B. 7). Moreover, (-urn )-’ 

are the location of the poles and their respective residues are (a, /u, 1. 

The approximants B 
n,j( ’ 

z can be proved to converge for a rather large 

class of kernels as is shown by the following theorem: 

THEOREM 5: Suppose b(z, u) is regular in a uniform neighborhood 

of the positive, real u axis and (In u) I+11 x b (z, u 1 is bounded as u - fm , 

for some n > 0; then the approximants B .tz) converge as n goes to 
n,J 

infinity for functions F(z) of the form (B. 7 1. 

Another very important property of these approximants can be 

established if the kernel b(z, u) has the property that 

(-auYb(z, u) 2 0 
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for all real, positive z and u, for j = 0, 1, 2, . . . The Stieltjes kernel 

has this property as does the kernel 

btz, u) = eNZu (B. 15) 

which is the form used in section IV to parameterize the 6 -functions. For 

kernels of this type, the following theorem can be proved: 

THEOREM 6: The approximants B .tz) to a function of the form 
n,3 

(B. 7) obey the following inequalities where z is real and nonnegative: 

C-1) n+l jW - Bn j(z) 

C-1) 
1 +j 

B n-* j+2(‘)]’ O ’ 

B n,o(z) z F(Z) 2 B, -,(z) , 

where j 2 -1, if and only if 

(-au)jb(z, u) 2 0 

(B. 16a’ 

(B. 16b’ 

(B. 16~ 

(B. 17) 

for all real, nonnegative z and u, and j = 0, 1, 2, . . . These inequalities 

have the consequence that the B, 
I 

,(z) and B, 
, 

-,(z) sequences form the best 

upper and lower bounds obtainable from the B n j(z) approximants with a 

given number of coefficients and that the use of additional coefficients 

(higher n) improves the bounds. 
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We now demonstrate the following equality for functions with which 

we are concerned: 

lim lim B n ,(z) = lim lim B n, ,(z) = lim F(z) 03.18) 
n +m z-m ’ z -m n-cm z-co 

where z -m along the positive real axis. 

Suppose b(z, 
-zu u)isoftheforme . For such a kernel (in fact, 

it is true much more generally) it is easy to show that B n, ,(z) is a monotonically 

decreasing function for real positive z. This follows from the fact that the 

U and cy 
m m 

in (B. 8) are positive, which can be deduced by first noticing that 

the equations (B. 12) are the same whether we use kernel (B. 13) or (B. 15). Then, 

from the remarks following (B. 13) and the well-known properties of 

[n, n] Padh’s to Stieltjes series the monotonicity of the B, o(z) follows. 

Now suppose that F(m) is finite and that ( F(z) - F(m)1 can be made arbitrarily 

small by choosing z large enough. By theorem 5 we know that for any 

small positive b(z), we can find an No such that for N > No, 

B N ,(z) - F(z) < 6(z) (B. 19) 

for real positive z. Since B 
n,O( ” 

z is smooth, and monotonically decreasing, 

B n Ofm) ‘Bn,O (z). Hence, using (B. 19) we can write 
> 

B N 0k=) - F(m) < 6(z) + F(z) - F(m) . (B. 20) 
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Now, we can always find a z such that 1 F(z) - F(m) 1 is arbitrarily small. 

Furthermore, for large enough NO 6 (z) can be made arbitrarily small, 

and so for large enough N the right-hand side of (B. 20) can be arbitrarily 

small in magnitude. Thus we have convergence at z = m and the interchange 

of limits in (B. 18) is allowed. 
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P 
.Oi 

L 
.1 

i 

10 

100 

Periodic 
Boundary 
Conditions 

.1209 

.5620 

.9230 

.9916 

.9992 

.4044 4 

.7162 2 

.9486 2 

.9944 2 
I 

.9995 2 I 

TABLE I 
GPA bounds to F/ 2p for the two dimensional x - y model 
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that there is a simple connection between the critical behavior of a 
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g 
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6 Another method of setting up the calculation would have been to include 

the single link interactions in the single link weighting. In that case the 

M’s would be defined as M = EnrIn(ple 
-An2 

F , and there would have been 

no x interaction. Keeping A to all orders in the single link terms while 

expanding in the terms which couple links seems to multilate the 6 -function 

beyond recognition, and so we have not done it. But in high orders it 

may be calculationally advantageous to use the Mr described here, omitting 

the x interactions, and later expanding the Mr keeping the appropriate 

powers of X . 

7 
This theorem is a slightly rephrased version of Theorem 5 of reference 2. 

a 
I am grateful to J. L. Gammel for a useful communication on this point. 

9 See also the remarks at the end of reference 2. 

10 
Theorems 1 - 6 are quoted from the article by G. A. Baker in The Pad& -- 

Approximant in Theoretical Physics, G. A. Baker and 3. L. Gammel, - 

ed. pp. 1 - 39 (Academic Press, New York, 1970). See also, J. Zinn- 

Justin, Physics Reports s, 55 (1971). and references therein. 

11 There exists a statement known as the Padk conjecture which concerns 

the convergence of Pad6 approximants for a certain class of meromorphic 

functions. This conjecture has not been proven, but there are no known 

counterexamples to it. For a statement of the conjecture, see the first 

citation in reference 10, p. 20. 
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12 Chief Dan George in Little % Man, -- produced by National General 

Studios, 1970. 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4:~ 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

FIGURE CAPTIONS 

Elements in the linked cluster expansion for the x - y model 

and Q. Ph. D. 

Graphs of fourth order in the LCE. 

Some linked cluster graphs which are zero. 

An example of a linked cluster graph and its decomposition 

into two-dimensional manifolds. 

An example of a graph and its decomposition into elementary 

closed paths. 

The elementary graphs formed from closed paths for the 

x - y model. 

Possible configurations for the graph of Fig. 2d for the 

two-dimensional x - y model. 

The approximants P,/P (curve a) and P2/ p (curve b), to F/P 

(curve c) for the one-dimensional x - y model. 

The approximants Pl/Pd for the x - y model for integer 

25 d( 6. 

The approximants 2Pl/d(d-i)P for Q. Ph. D. for 2 5 d 5 6. 

The exact result, F& for d = 2 is the dashed line. 
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Fig. 11: 11, B The bounds NP n, o(X = m ), n = 1, 2 for the one-dimensional 

x - y model as a function of N. For each value of p the lower 

curve is n = 2, the upper curve n = 1. 

Fig. 12: The bounds derived in section IV to F/p for the one-dimensional 

x - y model. Curve a is the bound derived from Bi o, 

curve b from B2, o, and curve c is the exact result. 

Fig. 13: The bounds 
In B1 =m) 

6 

o(x 
to F/pd for the x - y model for 

Fig. 14: 

2sds6. 

2 In B 
The bounds 

1 o(A = m) 

d(d 1 1)p 
2F 

to d(d - 1)(3 for Q. Ph. D. 

for 2sd 56. The dashed line is the exact curve F/p for 

d = 2. 

Fig. 15: Pictorial representation of the function G(A) defined in (4. 11). 
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